
Chapter 6

Modular Arithmetic

6.1 Congruences

We usually associate arithmetic with the infinite set of integer numbers. However,
modular arithmetic on finite sets is commonly used in our daily life. As an example,
if it is now 1 am and we let 1000 hours pass, what time will it be? We can use the
division algorithm to see that 1000 = 41 × 24 + 16 and conclude that adding 1000
hours is like adding 16 hours, since the clock returns to the same position every 24
hours. So after 1000 hours it will be 5 pm (17 hours after midnight).

There are many examples in which it is natural and useful to limit our number
system to a finite range of integers, such as 0 through n−1, for some n. This number
system is denoted by Zn. Days of the week, hours of the day, minutes in an hour
are all familiar examples of finite number systems, as are numbers in microprocessor
registers, commonly limited to 32 binary digits.

Modular arithmetic allows us to add, subtract, multiply, and sometimes divide
numbers while staying within the finite set Zn. The number n is called the modulus.
A central notion in modular arithmetic is congruence. We say that two integers are
congruent modulo n if they leave the same remainder when divided by n. Here is the
formal definition:

Definition: Two integers a, b ∈ Z are said to be congruent modulo n, written as
a ≡n b or a ≡ b (mod n), if and only if they leave the same remainder when divided
by n, that is, a rem n = b rem n.

This definition captures our intuition that the day of the week will be the same
whether we let 10, 17, or 80 days pass. There is an equivalent definition of congruence
that is often useful in proofs:

Lemma 6.1.1. a ≡n b if and only if n|(a− b).

Proof. If a ≡n b then a rem n = b rem n. Put r = a rem n = b rem n. Then there
exist two integers q1 and q2, such that a = q1n + r and b = q2n + r. Subtracting the
second equation from the first, we get a− b = (q1 − q2)n and n|(a− b).

On the other hand, if n|(a−b) then there exists an integer d, such that a−b = nd.
By the division algorithm, there exist integers q1, q2 ∈ Z, and 0 ≤ r1, r2 < n, such
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that a = q1n + r1 and b = q2n + r2. Thus (q1 − q2)n + (r1 − r2) = nd, and r1 − r2 =
(q2 − q1 + d)n. Thus n|(r1 − r2). However, |r1 − r2| < n, so necessarily r1 − r2 = 0,
which implies that a rem n = b rem n, and a ≡n b.

You should use the definition to verify that for any a, b, c ∈ Z,

• a ≡n a. (Reflexivity.)

• If a ≡n b then b ≡n a. (Symmetry.)

• If a ≡n b and b ≡n c then a ≡n c. (Transitivity.)

The operations of addition, subtraction, and multiplication on Zn are defined by
first doing the corresponding operation in Z and then taking the remainder modulo
n. That is, if we denote these respective operations by +n, −n, and ·n, then

a +n b = (a + b) rem n

a−n b = (a− b) rem n

a ·n b = (ab) rem n

Exponentiation is defined through repeated multiplication.

Lemma 6.1.2. Properties of congruence:

(a) (a rem n) rem n = a rem n

(b) (a rem n) ≡n a

(c) (ab) rem n = (a rem n)(b rem n) rem n

(d) (a rem n)(b rem n) ≡n ab

(e)
∏k

i=1(ai rem n) ≡n

∏k
i=1 ai

(f) If a1 ≡n a2 and b1 ≡n b2 then

a1 + b1 ≡n a2 + b2

a1 − b1 ≡n a2 − b2

a1b1 ≡n a2b2

Proof. (b) is just a restatement of (a). To prove these we need to show that n|(a −
(a rem n)). Put r = a rem n. By the division algorithm, there exists q ∈ Z, such that
a = qn + r. Thus a− r = qn, which implies that n|a− r and concludes the proof.

(d) is a restatement of (c), and (e) can be proved from (d) by induction. To prove
(c) we need to show that n|(ab− (a rem n)(b rem n)). Use the division algorithm to
represent a = q1n + r1 and b = q2n + r2. Then

ab− (a rem n)(b rem n) = (q1n + r1)(q2n + r2)− r1r2 = (q1q2n + r1q2 + q1r2)n,
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which implies the claim.
We now prove (f). We know that n|(a1 − a2) and n|(b1 − b2). That is, there exist

integers q and s, such that a1−a2 = qn and b1−b2 = sn. Adding these equations gives
(a1 + b1)− (a2 + b2) = (q + s)n, which yields the first part of the claim. Subtracting
similarly gives the second part. Writing a1 = a2+qn and b1 = b2+sn and multiplying
the equations gives

a1b1 = a2b2 + b2qn + a2sn + qsn2

a1b1 − a2b2 = (b2q + a2s + qsn)n,

which yields the third part.

6.2 Modular division

You might have noticed that we defined addition, subtraction, and multiplication, but
not division. This might not be surprising, since the division operation is not defined
for the integers in general: There is no integer that corresponds to 5 divided by 4, for
instance. (In other words, there is no x ∈ Z, such that 4x = 5.) This distinguishes Z
from sets like Q or R that are closed under division.

Division in Zn appears even more unruly. For example, in Z6, the equation 2x = 4
is satisfied by both x = 2 and x = 5, while the equation 2x = 3 has no solutions.
So the notion of “b divided by a” can be undefined or even ambiguous in Zn. In
particular, we cannot generally cancel a multiplier from both sides of a congruence,
that is, if ab ≡n ac we cannot reason that b ≡n c. To take the above illustration,
2 · 2 ≡6 2 · 5, but 2 6≡6 5.

Quite remarkably, however, the division operation is well-defined when n is a
prime p. Thus Zp is in a sense as well-behaved as the real numbers, despite being a
finite set! After a small digression that explores what “well-behaved” actually means
here, we will state an even more general result on modular division.

Digression (notions from abstract algebra): There is a way to precisely state
what we mean by “well-behaved” above. Jumping the gun, I’ll say that Zp is a field,
not just a ring. Now let me tell you what this means. The notion of a ring in algebra
is meant to abstract our intuition concerning the essential properties of the integers.
Given a set S equipped with two operations, + (addition) and · (multiplication), we
say that S is a ring if the following all hold for any a, b, c ∈ S:

• a + b ∈ S and a · b ∈ S.

• a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.

• a + b = b + a and a · b = b · a.

• a · (b + c) = a · b + a · c.

• There exists an additive identity element 0 ∈ S that satisfies a + 0 = a and a
multiplicative identity element 1 ∈ S that satisfies a · 1 = a for all a ∈ S.
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• For every a ∈ S there exists an additive inverse −a ∈ S for which a+(−a) = 0.

All the number systems we have encountered so far are rings, including Z, Q, R,
and Zn. However, some of them possess additional structure that allows the division
operation. Namely, a ring is said to be a field if, in addition to the above, the following
holds

• For every a ∈ S, such that a 6= 0, there exists a multiplicative inverse a−1 ∈ S
for which a · a−1 = 1.

The number systems R and Q, as well as Zp when p is prime, are fields. In fields
the division operation is well-defined, and b/a = b ·a−1, as can be verified by plugging
x = b ·a−1 into the equation ax = b. A field with a finite number of elements is called
a Galois field, after the French mathematician Evariste Galois. (A feisty young man
who died in a duel at the age of 20, after making significant enough contributions
to mathematics to have a whole field (sic) named in his honor!) Anyway, now that
we know what fields are, let’s see why Zp is one. In fact, we prove something more
general:

Theorem 6.2.1. If a and n are coprime then there exists exactly one x ∈ Zn for
which ax ≡n b, for any b ∈ Z.

Proof. We need to prove existence and uniqueness of x as described in the theorem.
ax ≡n b if and only if there exists q ∈ Z, such that ax− b = nq, or ax−nq = b. Now,
since gcd(a, n) = 1, any integer, including b, is a linear combination of a and n. This
proves existence.

To prove uniqueness, assume that for x, y ∈ Zn it holds that ax ≡n b and ay ≡n b.
Thus ax−ay ≡n 0, or n|a(x−y). As you proved in one of the homework assignments,
since n and a are coprime, this implies that n|(x− y), and therefore that x− y ≡n 0.
Thus x ≡n y, which proves uniqueness.

Corollary 6.2.2. For a prime p and any a, b ∈ Z, such that a 6≡p 0, there exists
exactly one x ∈ Zp for which ax ≡p b.

The fact that division is well-defined in Zp when p is prime also means that
cancelations become valid. Thus if a 6≡p 0 and ab ≡p ac we can safely conclude that
b ≡p c.

We now know that b/a is well-defined in Zp, but how do we find it? That is, how
do we find x ∈ Zp, for which ax ≡p b. This question is particularly important when p
is large and it takes too long to simply enumerate all the elements of Zp. Fortunately,
the following result, known as Fermat’s Little Theorem, can help us:

Theorem 6.2.3. For a prime p and any a 6≡p 0,

ap−1 ≡p 1.

Proof. Consider the set S, defined as 1 · a, 2 · a, . . . , (p − 1) · a. None of these p − 1
integers are congruent modulo p, since we have seen that if ia ≡p ja then i ≡p j.
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However, each element of S is congruent to some element of Zp. Since there are p− 1
elements in S and p− 1 nonzero elements in Zp, the elements of S must be congruent
to each of 1, 2, . . . , (p− 1) in some order. Therefore,

1 · 2 · · · · · (p− 1) ≡p 1a · 2a · · · · · (p− 1)a,

or
1 · 2 · · · · · (p− 1) ≡p 1 · 2 · · · · · (p− 1) · ap−1.

We can cancel each of 1, 2, . . . , (p − 1) from both sides of the congruence, obtaining
ap−1 ≡p 1.

Fermat’s Little Theorem allows us to quickly perform division in Zp. The element
x ∈ Zp for which ax ≡p b is simply (ap−2b rem p).
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